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Abstract. Numerical schemes for the compressible Navier-Stokes equations (CNSE) are constructed on the 
basis of the kinetic equation for the Chapman-Enskog NS distribution function the macroscopic variables 
of which satisfy the CNSE. It is clarified from this approach that the inclusion of the collision effect in the 
numerical flux improves the accuracy of the scheme. Then, a practically higher order scheme for the CNSE 
is derived and the existing first order Boltzmann scheme for the CNSE [Chou S.Y. and Baganoff D., Journal 
of Comput. Phys. 130, 217-230 (1997)] is recovered as its simplified version. The numerical computation 
is carried out for the CNSE derived from the BGK equation. Comparisons are made with the standard 
solutions for the CNSE, the results of Chou-Baganoff scheme, and the BGK solutions for small Knudsen 
numbers. 

I    INTRODUCTION 

The Kinetic schemes or Boltzmann schemes for the fluiddynamic equation systems are important byproducts 
of kinetic theory (see e.g., Refs. [1]- [7] and the references therein). In particular, the Boltzmann scheme for the 
compressible Euler equations (CEE) is well known and is studied in the framework of Cauchy problem of the 
collisionless equation. The extension to the case of the compressible Navier-Stokes equations (CNSE) is also 
tackled. For example, in Chou-Baganoff scheme, >-5' the local Maxwellian, which is employed as the initial data 
in the computation for the CEE, is replaced by the Chapman-Enskog Navier-Stokes distribution function and 
the numerical flux is computed by using the collisionless equation as before. It is demonstrated in the problem 
of normal shock wave that Chou-Baganoff scheme yields valid solutions for the CNSE. The satisfactory viscous 
boundary-layer profiles are obtained by the Gas Kinetic BGK scheme proposed by Prendergast and Xu ™ >-7' 
This scheme is not based on the collisionless equation and the effect of molecular collision is taken into account 
in the numerical flux. 

Notwithstanding the successful results, the theory of Boltzmann schemes is not very transparent because of 
the indirect relationship between the fluiddynamic equation system and the kinetic equation that the scheme 
is based on. If the scheme is constructed on the basis of the kinetic equation the corresponding macroscopic 
variables of which satisfy the fluiddynamic equation system, the relation to the fluiddynamic equation will 
become obvious by construction and the criteria of the approximation will become clear. When its simplified 
equation is employed in the construction of the scheme, the clear information of its intrinsic error will help 
avoid the meaningless approximation in the actual numerical computation. On the other hand, if we regard 
the Boltzmann schemes as the first step of the Boltzmann solvers to analyze the actual rarefied gas flows for 
small Knudsen numbers, the kinetic equation should be related to the full Boltzmann equation. 

In the present paper, we will study the Boltzmann schemes for the CNSE following the above strategy. 
We will construct the scheme on the basis of the kinetic equation for the Chapman-Enskog Navier-Stokes 
distribution function the macroscopic variables of which satisfy the CNSE. In the course of the construction, 
the necessity of the inclusion of the collision effect for the improvement of the accuracy, which is claimed in 
Ref. [7], will be clarified. Then, a practically second order Boltzmann scheme for the CNSE will be obtained 
and Chou-Baganoff scheme will be recovered as its simplified version. Further, as a byproduct of the present 
study, a new second order scheme (in time) for the CEE will be obtained from the kinetic equation that has a 
direct relationship with the CEE. 
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II    THEORY 

A    Notation 

The main notation employed in the present paper is as follows: L is the reference length of the system 
under consideration; po is the reference density; To is the reference temperature; IQ is the mean free path of 
the gas molecules in the equilibrium state at rest with the density po and temperature To; e = ^/TTIQ / (2L); 
Lxi is the space coordinate system, (2ßTo)1'2^ is the molecular velocity, where R is the specific gas constant; 
T(2ÄT0)"

1/2i is the time; pol2RT0)-
3/2f(xi,^,t) is the velocity distribution function; p0p, (2RT0)

1/2Ui, T0T, 
PoP (po = RpoTo), PoPij, andpo(2-RTo)1/2Qj are the density, flow velocity, temperature, pressure, stress tensor, 
and heat flow vector of the gas, respectively. 

B    Chapman-Enskog expansion 

The Chapman-Enskog expansion of the Boltzmann equation 

f^SH^ (i) 

for small parameter e provides the materials for the construction of our Boltzmann scheme. We briefly review 
this expansion according to Ref. [8]. 

The fluiddynamic solution of the Boltzmann equation (1) is assumed to be in the form: 

f = f(t,h,Dh,e), (2) 

where D is the abbreviation of differential operators with respect to x» and the vector h represents the macro- 
scopic variables, i.e., (ho, hi, h^)=(p, pui, 3pT/2 + pu2), which are defined as the products of / and collision 
invariants if) (4>o = 1, V'i = & (* = 1> 2, 3), and ip4 = £2) 

h= f  t/>fd£. 
JR

3 
(3) 

The solution (2) depends on t and Xi only through h and its derivatives Dh.   It is also assumed that the 
conservation equation system for Eq. (1) is in the form: 

Bh 
— = *(h,Dh,e). (4) 

The / and # are expanded into the power series of e 
oo „, oo 

/ = E c*/fc(€, h, Dh),     ^ = E efc**(fc'Dh)- (5) 
fe=0 fe=0 

The coefficients /& (k = 0,1, 2, ■ • •) are the solutions of the following integral equations: 

0 = J(/o,/o), (6) 

l-\-m=k—1 l+m=k 

The sequence of integral equations are solved from the lowest order under the constrain 

/   tl>f0dt = h, f   tl>fkdt = 0   (fc>l). (8) 
JR

3 JR
3 

The inhomogeneous term of integral equations (7) must satisfy the compatibility condition 

*fc-i+ /   ^i^zld€ = 0, (9) 
JR

3 dxi 

which determines *fe_i. 
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C    Distribution function for CNSE 

The distribution function that yields the Navier-Stokes stress tensor and heat flow vector is given by 

fcNSE = fo + efi- (10) 

The coefficient fo is the local Maxwellian 

fo = jJ^-M-c2), (ii) 

where C = (Cf)1'2 and d = (£» — Uij/T1'2. The coefficient /i is the solution of the linear integral equation 

C!2        F)i<-        C x,   ftT 
2J(/o,/1) = [2(QCj - Y

S
«)}£; + j^ - |)^]/o. (12) 

under the constrain (8). For hard-sphere molecules, f\ is given by 

1 C2 8ii-        C 8T 

* = -^[«^ - T^B^ + r^(cW1/o(C)' (13) 

where the functions A(C) and B(C) are studied in Refs. [9] and [10] [The function v{Q in Eqs. (Al)-(A5) of 
Ref. [10] should be 2\f2v(C,)]. For the BGK equation 

/i is given by 

h = _IP(W7, _ ^,,)^ + ^ - 5)g1A(c). (15, 

The truncated conservation equation system 

^ = *0 + e*i, (16) 

is the CNSE and its explicit form is 

w      p      I   A [ pUj 
pu%
 + ~ä~ \ pUlUi+ 2P«i I = °' (17) 

P[\T + 4} J      j V pllT + ul\ui + pk^k + Qj 

where 

Pl3 = P5l3 - 7leT«(|^ + p- - \^5l3l        Q% = -%eT«f. (18) 
dxj      dxi      3dxk   ■" A dxi 

The 7i and a are 71 = 1.270042427, 72 = 1.922284066, and a = 1/2 for hard-sphere molecules and 71 = 72 = 
a = 1 for the BGK equation. 

D    Kinetic equation for JCNSE 

Let us consider the /CNSE the macroscopic variables of which satisfy the CNSE (16). Making use of Eq. (7), 
we find that fcNSE satisfies 

dfcNSE   .  t 9/cNSE       j ,, s. ,irA 
 fit ft  = JcNSE\JCNSEn                                                                   \iy) 
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where 

JCNSEUCNSE) = J  + R, (20) 

j«=xy £ j(fl,u,   R=Z
2
(^+§^^). (2i) 

fe=0       l+m=k+l 

The functional form of JCNSEUCNSE) is given and it depends on xi and t through the macroscopic variables 
for fcNSE and their spatial derivatives. For general distribution function / we can define the operator JCNSE 

in the same way. Then, we notice that fcNSE(%i,£i,t) is the solution of the Cauchy problem 

%+*HrrJcNSE{f)> (22) 

f(xi,Zi,0)=fcNSE(xi,Zi,0). (23) 

If the numerical scheme for the CNSE is based on the above Cauchy problem, its intrinsic error is zero. If 
we employ its simplified equation, the resulting scheme has the intrinsic error. Next we show the simplified 
equation together with its intrinsic error. 

The solution of the above Cauchy problem is formally written in the integral form along its characteristic 
line: 

f(€i,Xi,t) = fcNSE(£i,Xi ~t£i,0) +   /    [J1 +R](£i,Xi-(t-T)£i,T)d,T. 
Jo 

(24) 

Then, the macroscopic variables and their spatial derivatives Vkh (k = 0,1, • • • and V° means identity) at 
t = At are given by 

Vkh(xi,At) = Y1+Y2 

Y1 = Vk  [    WcNSEfaXi - At&,0)d£ 

Y2 = Vk   f     t/>   /      [J1 + R]&,Xi - (At - T)^,T)dTd^. 
JR3    JO 

(25) 

The Y2 is evaluated as follows. 

Y2 = ^Vfe y 3 ^([J1 + R]^,Xi,At) + [J1 + RUuXi - At&,0))d£ + 0(At3), 

At2     ß   r 
= - —Vfe— /    ^i[J

1+Ä](&,x<,0)d£ + O(Ai3), (26) 
1 axi JR3 

where the trapezoid rule and the orthogonality property JR31/> J1^ = 0 and fR3 iftRd£ = 0 are employed. The 
above evaluation indicates that the influence of the molecular collision is 0(At2); the intrinsic error of the 
scheme based on the collisionless equation (Chou-Baganoff scheme) is 0(At2) and thus it is first order accurate 
in time. If the term J1 is retained, the error would be 0(e2At2). Furthermore, if J1 is replaced by J°, the 
error would be 0(eAi2). The third simplified equation 

%^H-rA (27) 

yields the approximate solution of the CNSE, the accuracy of which is practically higher order in time as long 
as e < At. 

Finally, we remark on the Boltzmann scheme for the CEE. In the construction of the first order scheme 
the Cauchy problem of collisionless equation from the local Maxwellian is considered. Deshpande I2! and 
Perthame ™ constructed the second order Boltzmann schemes for the CEE by the brilliant modification of the 
initial data. On the other hand, the local Maxwellian /o the macroscopic variables of which satisfy the CEE 
satisfies Eq. (27) and the intrinsic error of the scheme based on Eq. (27) is zero, which implies that the second 
order scheme for the CEE can also be made by modifying the kinetic equation instead of the initial data. 
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E    NUMERICAL ART 

Now, all the necessary materials are prepared. Here, we construct a Boltzmann scheme for the CNSE as the 
finite-volume approximation of Eq. (27). In order to avoid unessential complexity, we consider the spatially 
one-dimensional case; the physical quantities are independent of x2 and X3. At t = 0, the macroscopic variables 
p(xi,0), Ui(xi,0), and T(xi,0) are assumed to be piecewise linear over cells (sj_ 1/2,37+1/2) and the initial 
data fcNSE(xi,^i,0) is made accordingly. Let the average of h{x\,t) over the cell (sj-1/2, Sj+1/2) be denoted 
by hj(t). Multiplying Eq. (27) by if) and integrating the result over the whole velocity space i?3, over the cell 
(sj-i/2, S

J+I/2)J 
and over the time interval (0, At), respectively, we have 

hj(At) = MO) - ^(*i+i/2 - F3-1/2), (28) 

where Ax = Sj+1/2 ~~ sj-i/2 and Fj±i/2 are the flux vectors given by 

rAt 
Fj±i/2= /   4>£if(sj±i/2,t,t)d£dt. 

Jo    JR
3 

(29) 

We split the flux vector i?
J+1/2 into two parts according to the direction of characteristic line of Eq. (27): 

Fj+l/2 = Fj+l/2 + Fj+l/2' 

(30) Ff+i/2 = /     /      £1^/(^+1/2 T 0,£, t)d£dt, 
Jo      J$i>0 

where Sj+1/2 + 0 and Sj+1/2 ~~ 0 mean the limiting values; / for Sj+i/2 + 0 is computed in the right cell and 
that for Sj+i/2 — 0 is done in the left one. Recall that the intrinsic error of the scheme based on Eq. (27) is 
0(eAt2). We can employ the approximation of the integrand: 

/(sj+1/2 T 0, Ci, t) = (/o + e/i)(s,-+i/2 q= 0, £, 0) + t[J° - ft|^](Sj.+1/2 T 0, £, 0) + 0(et + t2), (31) 

Then, we have 

*f+i/2 = /       ^ (A*(/O + e/i) + ^f[J° -€i|^]) (si+i/2 T<U,0)d£. (32) 

The integration with respect to £ can be done in advance. In the case of the standard Boltzmann equation, it 
is convenient to employ the polynomial approximation of the functions A(C) and B(C) in f\. In the case of the 
BGK equation, these functions are polynomials of C [see Eq. (15)]. Although the computation is tedious and 
the resulting expression is lengthy, however, the computer algebra, such as MATHEMATICA, is very useful 
and we are free from the cumbersome business. 

For comparison, we present two other formulas of the numerical flux without the term J°. The first one is 

Ff   /2 = At f      a-0 (/o + e/i) (SJ+I/2 T 0, £, 0)d£, (33) 

which gives Chou-Baganoff numerical flux. The second one is 

F%l/2 = / > 0 ^ (Af(/o + £/l) " ^Taf^) (s^/2 T 0,£,0)d€. (34) 

This is the modified version of Chou-Baganoff numerical flux (33), where the slope in the cell is taken into 
account up to the order of At2. For e = 0, the formula (34) becomes the 2nd order kinetic flux vector splitting 
scheme for the CEE, which is second order accurate in space but is not in time because of the lack of the term 
J°. The formula (32) with e = 0 gives the numerical flux for the CEE, which is second order accurate in time 
as well as in space. 
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FIGURE 1. Comparison of shock profile for M = 3. 

Ill    NUMERICAL DEMONSTRATION 

We consider the spatially one-dimensional problems of normal shock wave and plane Couette flow and 
carry out the computation for the CNSE derived from the BGK equation. Comparisons are made with the 
BGK solutions as well as the standard solution of the CNSE. In the following, the physical quantities of 
the gas is independent of X2 and X3 and x\ will be denoted by x. In all the computations of the CNSE, 
Ax(= Sj+1/2 ~~ sj-i/2) and At are, respectively, uniform and no slope limiter is employed. 

Figure 1 shows the normalized density p, flow velocity ü, and temperature T in the plane shock layer at the 
upstream Mach number of 3 (M = 3). In the figure, the reference length L is equal to ^/TTIQ/2 (e = 1) and 
po and To are those at upstream condition (a; = —00). The symbol indicates the result of the present scheme 
(Ax = 0.1, and At = 0.005) and the solid line is the reference solution obtained by the method employed 
in Ref. [11]. The agreement is very satisfactory and the same observation is made for higher Mach numbers. 
Needless to say, the highly nonequilibrium flows is out of the application range of the CNSE and the results 
in the figure are not physically correct. This figure shows the validity of the present scheme as the solver for 
the CNSE. The leading error of the present scheme for time step At is 0(eAt2) and e corresponds to the local 
Knudsen numeber, which is 0(1) in the problem of strong shock wave. Thus, in this problem the accuracy of 
the present scheme becomes first order. 

The accuracy of the present scheme (32) is practically higher order in time as long as e < At. Tables 1-3 
shows the result of the Cauchy problem of the CNSE with e = 0.0001 from the initial condition p = 1, m = 0, 
and T = 1 + exp(—x2). The time step is given by At = Ax/8. For comparison the result of Chou-Baganoff 
scheme (33) and that of modified one (34) are tabulated in the tables. These tables indicate that the inclusion 
of the collision effect improves the rate of convergence greatly. 

Finally we show the results of the Couette flow between two parallel plates; both plates are kept at a uniform 
temperature To; one of the plates (x = 0) is at rest and the other (a; = 1) is moving at the speed of 1 (the 
dimensional speed is A/2-Rio). Figure 2 shows the results at the Knudsen number (= 2e/ y^r) of 0.012 ( based 
on the distance between the plates, wall temperature To, and the average density). In the computation of the 
CNSE the slip boundary condition with the slip coefficients for the BGK equation and the diffuse reflection I12' 
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TABLE 1. The density p at (x,t) = (0.8,2). 

Ax Present [Eq. (32)] Chou-Baganoff [Eq.(33)] Modified [Eq. (34)] 
0.2 0.633401 0.631299 0.642383 
0.1 0.633093 0.631932 0.637664 
0.05 0.633083 0.632472 0.635384 
0.025 0.633083 0.632769 0.634237 

TABLE 2. The flow velocity «i at (x,t) = (0.8,2). 

Ax Present [Eq. (32)] Chou-Baganoff [Eq.(33)] Modified [Eq. (34)] 
0.2 0.060357 0.054316 0.061260 
0.1 0.059545 0.056383 0.060139 
0.05 0.059458 0.057865 0.059770 
0.025 0.059455 0.058658 0.059612 

TABLE 3. The temperature T at (x,t) = (0.8,2). 

Ax Present [Eq. (32)] Chou-Baganoff [Eq.(33)] Modified [Eq. (34)] 
0.2 1.918041 1.911346 1.898904 
0.1 1.918886 1.915558 1.908888 
0.05 1.918896 1.917264 1.913801 
0.025 1.918887 1.918081 1.916315 

is employed. The symbol of black square indicates the result of the present scheme for (Ax, At) = (0.1, 0.01) 
and that of white circle does that for (Arc, At) = (0.02,0.002). They are compared with the solution of the 
BGK equation under the diffuse reflection boundary condition (solid line). It is seen that the agreement with 
the BGK solution is very satisfactory (the Knudsen layer correction to the CNSE solution is not made in the 
figure; this layer is not taken into account in the computation of the CNSE since it does not contribute to 
the numerical flux). Incidentally, we remark that similar observations are made in the problems of weak shock 
wave and nonlinear heat transfer between parallel plates for small Knudsen numbers. 

In the present computation, the CNSE derived from the BGK equation is employed. The extension of the 
scheme to the CNSE derived from the standard Boltzmann equation can be done straightforwardly and the 
precise numerical computation of the standard Boltzmann equation to establish the reference solutions, though 
heavy, can be done at least for spatially one-dimensional case (see e.g., Refs. [13] and [14]). The extension and 
the numerical demonstration are in preparation. 

IV    CONCLUDING REMARKS 

We have constructed the Boltzmann schemes for the CNSE that follow the time evolution of Chapman- 
Enskog NS distribution function. The agreement between the CNSE results and the BGK solutions seems to 
support the legitimacy of this expansion up to the Navier-Stokes level. As noted in Ref. [15], however, the 
solution of the CNSE is obtained by the correction to that of the CEE in this expansion. In the abovementioned 
problems, i.e., the plane Couette flow, weak shock, and heat transfer between parallel plates, the CEE does not 
yields the first order approximation (weak solutions are not considered in this expansion). These problems are 
out of the application range of this expansion in the strict scense. The legitimacy of the use of the CNSE in 
the weak shock problem is given in Refs. [16] and [13] by the systematic expansion and it is confirmed that the 
CNSE yields the solution correct up to 0(M — 1). The CNSE under the slip boundary condition also yields 
the solution correct up to O(e) in the above two-surface problems, which is verified for the first time by the 
systematic analysis in the framework of the boundary-value problem. 

The asymptotic theory for small Knudsen numbers has made a great progress in the last three decades (see 
Ref. [15] and the references therein). The ghost effect is one of the most striking discoveries; in Ref. [17] the 
discrepancy of the CNSE in the continuum limit is revealed by the systematic analysis based on the Boltzmann 
equation together and its numerical demonstration. The numerical schemes for continuum gasdynamic equation 
systems are sometimes employed as the Boltzmann solvers for small Knudsen numbers under the seeming 
consistency with the old theory, which is not developed in the framework of the boundary-value problem. It 
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1.15 

FIGURE 2. Comparison of flow velocity v and that of temperature T at Kn=0.012. 

is dangerous to employ the Boltzmann schemes for this purpose without paying attention to the recent theory 
established by the systematic analyses. 
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